Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Añadir filtros

Asunto principal
Tipo del documento
Intervalo de año
1.
Front Public Health ; 10: 985553, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-2163174

RESUMEN

Fever screening is an effective method to detect infectors associated with different variants of coronavirus disease 2019 (COVID-19) based on the fact that most infectors with COVID-19 have fever symptoms. Non-contact infrared thermometers (NCITs) are widely used in fever screening. Nevertheless, authoritative data is lacking in defining "fever" at different body surface sites when using NCITs. The purpose of this study was to determine the optimal diagnostic threshold for fever screening using NICTs at different body surface sites, to improve the accuracy of fever screening and provide theoretical reference for healthcare policy. Participants (n = 1860) who were outpatients or emergency patients at Chengdu Women's and Children's Central Hospital were recruited for this prospective investigation from March 1 to June 30, 2021. NCITs and mercury axillary thermometers were used to measure neck, temple, forehead and wrist temperatures of all participants. Receiver operating characteristic curves were used to reflect the accuracy of NCITs. Linear correlation analysis was used to show the effect of age on body temperature. Multilinear regression analysis was used to explore the association between non-febrile participant's covariates and neck temperature. The mean age of participants was 3.45 ± 2.85 years for children and 28.56 ± 7.25 years for adults. In addition 1,304 (70.1%) participants were children (≤12), and 683 (36.7%) were male. The neck temperature exhibited the highest accuracy among the four sites. Further the optimal fever diagnostic thresholds of NCITs at the four body surface measurement sites were neck (36.75 °C, sensitivity: 0.993, specificity: 0.858); temple (36.55 °C, sensitivity: 0.974, specificity: 0.874); forehead (36.45 °C, sensitivity: 0.961, specificity: 0.813); and wrist (36.15 °C, sensitivity: 0.951, specificity: 0.434). Based on the findings of our study, we recommend 36.15, 36.45, 36.55, and 36.75 °C as the diagnostic thresholds of fever at the wrist, forehead, temple and neck, respectively. Among the four surface sites, neck temperature exhibited the highest accuracy.


Asunto(s)
COVID-19 , Adulto , Niño , Humanos , Femenino , Masculino , Lactante , Preescolar , Estudios Prospectivos , COVID-19/diagnóstico , Fiebre/diagnóstico , Fiebre/etiología , Temperatura , Política de Salud
2.
Risk management and healthcare policy ; 15:447-456, 2022.
Artículo en Inglés | EuropePMC | ID: covidwho-1743744

RESUMEN

Purpose Fever is one of the most typical clinical symptoms of coronavirus disease 2019 (COVID-19), and non-contact infrared thermometers (NCITs) are commonly used to screen for fever. However, there is a lack of authoritative data to define a “fever” when an NCIT is used and previous studies have shown that NCIT readings fluctuate widely depending on ambient temperatures and the body surface site screened. The aim of this study was to establish cut-off points for normal temperatures of different body sites (neck, forehead, temples, and wrist) and investigate the accuracy of NCITs at various ambient temperatures to improve the standardization and accuracy of fever screening. Patients and Methods A prospective investigation was conducted among 904 participants in the outpatient and emergency departments of Chengdu Women’s and Children’s Central Hospital. Body temperature was measured using NCITs and mercury axillary thermometers. A receiver operating characteristic curve was used to determine the accuracy of body temperature detection at the four body surface sites. Data on participant characteristics were also collected. Results Among the four surface sites, the neck temperature detection group had the highest accuracy. When the neck temperature was 37.35°C as the optimum fever diagnostic threshold, the sensitivity was 0.866. The optimum fever diagnostic thresholds for forehead, temporal, and wrist temperature were 36.65°C, 36.65°C, and 36.75°C, respectively. Moreover, triple neck temperature detection had the highest sensitivity, up to 0.998, whereas the sensitivity of triple wrist temperature detections was 0.949. Notably, the accuracy of NCITs significantly reduced when the temperature was lower than 18°C. Conclusion Neck temperature had the highest accuracy among the four NCIT temperature measurement sites, with an optimum fever diagnostic threshold of 37.35°C. Considering the findings reported in our study, we recommend triple neck temperature detection with NCITs as the fever screening standard for COVID-19.

3.
Ann Transl Med ; 8(10): 635, 2020 May.
Artículo en Inglés | MEDLINE | ID: covidwho-594420

RESUMEN

BACKGROUND: Coronavirus disease 2019 (COVID-19) has spread rapidly worldwide from Wuhan. An easy-to-use index capable of the early identification of inpatients who are at risk of becoming critically ill is urgently needed in clinical practice. Hence, the aim of this study was to explore an easy-to-use nomogram and a model to triage patients into risk categories to determine the likelihood of developing a critical illness. METHODS: A retrospective cohort study was conducted. We extracted data from 84 patients with laboratory-confirmed COVID-19 from one designated hospital. The primary endpoint was the development of severe/critical illness within 7 days after admission. Predictive factors of this endpoint were selected by LASSO Cox regression model. A nomogram was developed based on selected variables. The predictive performance of the derived nomogram was evaluated by calibration curves and decision curves. Additionally, the predictive performances of individual and combined variables under study were evaluated by receiver operating characteristic curves. The developed model was also tested in a separate validation set with 71 laboratory-confirmed COVID-19 patients. RESULTS: None of the 84 inpatients were lost to follow-up in this retrospective study. The primary endpoint occurred in 23 inpatients (27.4%). The neutrophil-to-lymphocyte ratio (NLR) and C-reactive protein (CRP) were selected as the final prognostic factors. A nomogram was developed based on the NLR and CRP. The calibration curve and decision curve indicated that the constructed nomogram model was clinically useful. The AUCs for the NLR, CRP and Combined Index in both training set and validation sets were 0.685 (95% CI: 0.574-0.783), 0.764 (95% CI: 0.659-0.850), 0.804 (95% CI: 0.702-0.883), and 0.881 (95% CI: 0.782-0.946), respectively. CONCLUSIONS: Our results demonstrated that the nomogram and Combined Index calculated from the NLR and CRP are potential and reliable predictors of COVID-19 prognosis and can triage patients at the time of admission.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA